26. Tuning Process

2023. 9. 12. 11:35Google ML Bootcamp/2. Improving Deep Neural Networks

Hyper parameters

1. learning rate

2. beta (Adam : beta1, beta2)

3. epsilon

4. number of layers

5. number of hidden units

6. learning rate decay

7. mini-batch size

 

which is the most important?

- we don't know. 

 

Thus, try random value. (Don't use a grid)

- if number of hyperparameter is small, grid is ok

- but really high dimension(=number of hyperparameter is large),  it's difficult to know what is the most important hyperparameter in aplication.

조합최적화 문제?

- 일단 무작위로 조합을 설정 후 여러개를 테스트

- 성능이 좋은 지점을 주변으로 subset 지역을 할당하여 다시 설정된 범위 내에서 여러개를 테스트.

circle point is good performance in large sqaure