11. Improving your model Performance
2023. 9. 14. 13:41ㆍGoogle ML Bootcamp/3. Structuring Machine Learning Projects
supervised learning
1. fit training set (=avoidable bias)
- train bigger model(number of units, layers, etc...)
- train longer
- train with beteer optimization algorithm(momentum, RMSprop, Adam etc...)
- change NN architecture(RNN to CNN etx...)
- hyperparameter search
2. generalize to the dev/test set(=down variance)
- More data
- Reularization(L2, Dropout, data augumentation)
- change NN architecture
- hyperarameter serach
'Google ML Bootcamp > 3. Structuring Machine Learning Projects' 카테고리의 다른 글
13. Cleaning Up Incorrectly Labeled Data (0) | 2023.09.14 |
---|---|
12. Error Analysis (0) | 2023.09.14 |
10. Surpassing Human-level Performance (0) | 2023.09.14 |
9. Understanding Human-level Performance (0) | 2023.09.14 |
8. Avoidable Bias (0) | 2023.09.14 |